

You want to create a game, or just want to learn

how to program in C#, sometimes starting simply is

the best way to go, so here's a step by step guide to

creating a card game.

This set of tutorials will walk you through creating a

simple card game. The example is blackjack but the

same principles apply to most card games so you

should be able to create almost any card game once

you've mastered the basics.

For an example you can try out the simple poker

game I created using the same principles. Starting

with the relatively simple rules of blackjack, you’ll

learn the most common C# programming practices

and techniques. Then, if you want, you can improve

the game, adding more features perhaps network

play for multiplayer or card games with more

complex rules.

What will I learn?

The focus of these lessons is to show you the most

common things you’ll need to do to create a C#

program – such as creating classes, handling user

inputs, and doing common calculations.

What do I need to have to create this?

The examples will be created using visual studio

fortunately Microsoft has made this available for

free at: https://www.visualstudio.com/

Download the community version and it will be all

you need to create the code for this project.

You're also going to need images of cards, a quick

google search should find you some or you can

create them from scratch. I used Photoshop to

create mine. A great free alternative is the gimp:

http://www.gimp.org/ or you could just make some

simple cards in any graphics program even paint.

tutorial_intro_html_m6c9c7c61 Card drawn in MS

paint

save your cards as jpegs 200x270pixels and name

them as follows 01_clubs.jpg, 02_clubs.jpg… etc

Once you have your cards and have downloaded and

installed visual studio it’s time to create your

project.

Choose file ->new -> project

For this project we’ll use Visual C# and windows

Forms

Give your project a name (I just called mine

Blackjack) and click ok.

Now you should be viewing your newly created

form, currently called Form1

You can edit this in the properties field

I’ve chosen 1920 by 1080 as I want this project to fit

a standard HD screen

And I renamed it CaptnemoBlackJack. In the text

field (This name doesn’t really matter so pick

whatever you prefer)

But left the (Name) field as Form1 this is the field

that our code can use to identify the form so we‘ll

leave this as is.

I’ve also gone ahead and changed the BackColor to

ForestGreen which gives us a card table look.

Now we need some place to display our cards, since

the most cards we should have on the table in

blackjack is 11 (four 2’s plus three 3’s plus four 1’s

=21)

We’ll need 11 PictureBoxes, drag the picturebox

https://www.visualstudio.com/
http://www.gimp.org/

from the toolbox (left hand side) onto the form you

can repeat this or copy and paste till you have 11

picture boxes.

Should look something like this. Next We’ll need a

way to display messages to the user so add a

RichTextBox make its size 300,100

We’ll also need a few buttons so drag a button from

the left hand side resize it and change the text to

Deal, then repeat for hit and stick

Ok, we’ve got a basic card table now it’s time to

write some code. As I already mentioned this will be

C#, previously I had only written code in C and C++

but fortunately C# isn’t too different. I’m going to try

and follow object oriented programing here and card

games lend themselves quite well to this. In Visual

Studio each class(object definition) is a separate file.

The first thing we’ll define is a card. In the solution

explorer (should be to the right hand side)

Right click on the project name, choose add->class

Name this Card.cs and click ok

You’ll see the editor has created your class and

added some basic code should look like this

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace blackjack

{

 class Card

 {

 }

}

Every card will have the following attributes: suit,

value, card number

We also want to define what a ‘blank’ card will be

when a new card is created

So now our class should look like this:

 public class Card

 {

 public string suit { set; get; }

 public int value { set; get; }

 public int card_number { set; get; }

 public Card()

 {

 value = -1;

 suit = "";

 card_number = -1;

 }

 } //END Card class

Notice I changed it to a public class so it’ll be

available to the rest of our project,

I’ve also added a comment at the end so I can clearly

see where that class ends.

Our next object that we’ll need is a whole deck of

cards. So once more right click on the

Project name in the solution Explorer choose add-

>class this time name it Deck.cs and click ok.

Here’s the code we’ll put there, try reading through

it, I’ll go through and explain it afterward.

Deck.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace blackjack
{
 public class Deck
 {
 public List<Card> cards { set; get; } //deck is list
of cards
 // ******************************
 public Deck() //create a deck
 {
 cards = new List<Card>();
 loaddeck();
 }
 //*****************************

 public void loaddeck()
 {
 cards.Clear();
 int cardnum = 1;
 for (int i = 1; i < 5; i++) // 4 suits
 {
 for (int j = 1; j < 14; j++)
// 13 cards each (total 52 cards)
 {
 Card currentcard = new Card();
 //create a new card
 //assign suit
 currentcard.card_number = cardnum;
 if (i == 1)
 currentcard.suit = "spades";
 if (i == 2)
 currentcard.suit = "clubs";
 if (i == 3)
 currentcard.suit = "hearts";
 if (i == 4)
 currentcard.suit = "diamonds";
 // assign value
 currentcard.value = j;
 // put in deck
 cards.Add(currentcard);
 // adding card to deck
 //next card
 cardnum++;
 }
 }
 }
 // *************************
 public Card FindCard(int cardnum)
 {
 foreach (Card a_card in cards)
 {
 if (a_card.card_number == cardnum)
 {
 return a_card;
 }
 }
 return null;
 }
 // **************
 } // end deck class
}

So the first thing you should notice is that a Deck

object is going to contain a List which is a type of

array

This list will consist of objects of the class we

previously made ‘Card’ and the list will be called

cards.

NOTE: C# like C and C++ is case specific so Card is not

the same as card, but to make it more readable since

the list holds many (52) cards I have named it by the

plural.

Next we have a Constructor function that creates a

deck, it assigns a new list to cards then calls the

function loaddeck. The loaddeck function has a pair

of nested loops, one that counts through the four

suits and one that goes through the values 1 through

13. Each time the card number is incremented so

card number 1 is the ace of spades, card number 14

is the ace of clubs etc.

Finally we have a function that returns a card object

from the deck when given a card number.

You’ll notice at this point the deck is in order we

could go ahead and shuffle it now but instead I’m

going to randomly pick cards from the deck as we

need them which will have the same effect. So what

we need next is a random number, computers aren’t

good at random. There are a few different ways of

creating these, many use the system clock as a ‘seed’

to give different results. I’m going to use one that

uses a cryptography library to create the seed. So

once more create a new class, I’ll call this one

RandomNumber.cs. The code for it should look like

this:

RandomNumber.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace blackjack

{

 public class RandomNumber

 {

 private static readonly

System.Security.Cryptography.RNGCryptoServicePro

vider _seed = new

System.Security.Cryptography.RNGCryptoServicePro

vider();

 public static int NumberBetween(int minimum,

int maximum)

 {

 byte[] randomNumber = new byte[1];

 _seed.GetBytes(randomNumber);

 double asciiValue =

Convert.ToDouble(randomNumber[0]);

 double multiplier = Math.Max(0, (asciiValue /

255d) - 0.00000000001d);

 // adding one to the range, to allow for

rounding

 int range = maximum - minimum + 1;

 double randomValue = Math.Floor(multiplier

* range); // rounds to ensure within range

 return (int)(minimum + randomValue); // adds

minvalue to randomvalue(0 to max)

 }

 } // END RandomNumber

}

Now we can take that random number and use it to

draw cards from our deck. We’ll place these cards in

a new object I’ll call Hand. Yep, you guessed it,

create a new class and name this one Hand.cs Just

like a deck, a hand will need a list structure to hold

our cards, I’m also going to add a number_of_cards

which will be the initial amount of cards dealt (2)

and we can increment this as more cards are added

to the hand. We also have score to store the value of

the hand and a string called result, this will give us

some output to display to the player based on the

current score.

Hand.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace blackjack

{

 public class Hand

 {

 public List<Card> cards { set; get; }

 public int number_of_cards { set; get; }

 public int score { set; get; }

 public string result { set; get; }

 // *******************************

 public Hand(int numcards) //constructor creates

list and places empty cards in it

 {

 number_of_cards = numcards; //number of

cards in a hand

 cards = new List<Card>(); // list to hold

cards

 Card emptycard = new Card(); // blank card

 for (int i = 0; i < numcards; i++)

 {

 cards.Add(emptycard); // adding blank

cards to list

 }

 }

//**

 public void add_card(Deck currentdeck, int

number_cards_in_a_hand) // picks random card

from deck and puts it in one of the blank card spots

created

 {

 bool added = false;

 int pickedcard = 0;

 if (currentdeck.cards.Count <= 2)

 {

 currentdeck.loaddeck();

 //clear_hand();

 }

 pickedcard =

RandomNumber.NumberBetween(2,

currentdeck.cards.Count - 1);

 Card currentcard =

currentdeck.cards.ElementAt(pickedcard);

 Card tobereplaced = new Card();

 while (!added)

 {

 foreach (Card temp in cards)

 {

 if (temp.suit == "")

//place to put new card in

 tobereplaced = temp;

 }

 if (tobereplaced != null)

 {

 cards.Remove(tobereplaced);

 cards.Add(currentcard);

 added = true;

 currentdeck.cards.Remove(currentcard);

 }

 }

 }

//*****************************

 public void deal_cards(Deck currentdeck, int

numcards)

 {

 numcards = cards.Count;

 for (int i = 0; i < numcards; i++)

 {

 add_card(currentdeck, numcards);

 }

 }

 // *************************************

 public void evaluate_hand()

 {

 score=0;

 foreach (Card temp in cards)

 {

 if (temp.value < 10)

 score = score + temp.value;

 else

 score = score + 10; // assigning face cards

a value of 10

 }

 // adjust for aces

 foreach (Card temp in cards)

 {

 if (temp.value==1 && score+10<=21)

 score = score + 10; // We haven't gone bust

yet so Ace is scored at 11

 }

 if (score>21)

 {

 result = "Sorry you bust";

 }

 else

 {

 result = "You have ";

 }

 }

 } //End hand

}

This class is a little longer than the previous one as I

have included functions to help deal with the hand

objects. First though we have the usual constructor

function which creates a list of cards and inserts

blank cards. Next we have the function that uses the

RandomNumber class to generate a random number

and use this to choose a card from the deck, which is

then placed in the list by the add_card function. The

add_card function is called by the deal_card function

which manages how many cards are added. Finally

we have the evaluate_hand function which

calculates the score for a hand, adjusting aces to be

1 or eleven as necessary and setting the result string

to either bust or the current score.

Ok, now we have the objects we’ll need lets put

them into action. From the Solution Explorer choose

Form1.cs and We’ll be adding the following

elements, a current deck the players hand, the

dealers hand and the number of cards to deal

initially. We’ll also setup how the form is going to

look at the start of the game. Here’s the code, read

through it and the comments should explain it.

Form1.cs

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;
using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace blackjack

{

 public partial class Form1 : Form

 {

 public Deck currentdeck { get; set; }

 public Hand player_hand { get; set; }

 public Hand dealer_hand { get; set; }

 public int numcards { get; set; }

 public Form1()

 {

 numcards = 2; //deal 2 cards initially

 currentdeck = new Deck();

 //create new deck of cards

 player_hand = new Hand(numcards); //create

hand for player

 dealer_hand = new Hand(numcards); //

create hand for dealer

 InitializeComponent();

 button1.Visible = true;

 // deal button is visible

 button2.Visible = false;

// hit button hidden

 button3.Visible = false;

 // stick button hidden

 pictureBox1.Visible = true;

 //showing spot for first card

 pictureBox2.Visible = false;

 //hiding the rest

 pictureBox3.Visible = false;

pictureBox4.Visible = false; pictureBox5.Visible

= false; pictureBox6.Visible = false;

pictureBox7.Visible = false; pictureBox8.Visible

= false; pictureBox9.Visible = false;

pictureBox10.Visible = false;

 pictureBox11.Visible = false;

pictureBox12.Visible = false;

 richTextBox1.Text = "Welcome to CaptNemo

BlackJack" + Environment.NewLine;

 richTextBox1.Text += "Press Deal to begin" +

Environment.NewLine;

 } //END Form1

 } //End partial Class

}

All right, now you actually have something to try out.

Up at the top of the screen there’s a Start button.

Click this and your program will be compiled and

started. You should have something like this:

So let’s make something happen when the player

clicks the deal button. Close the running program

then select the Form1.cs[Design] tab at the top of

the project window

Double click on the deal button and you’ll be taken

back to the Form1.cs tab but now some code has

been added creating a function that will run when

the deal button is clicked. Currently this is blank and

should look like this:

private void button1_Click(object sender, EventArgs

e)

 {

 }

Now we can add some code to display the players

cards

In between the { } add display_hand(player_hand);

This won’t do anything yet though as we haven’t

created the display_hand function, so after our new

function add this:

 // *** Display current hand ***

 public void display_hand(Hand playerhand)

 {

 int count = 0;

 string currentcard_picture = "";

 if (playerhand.cards != null && playerhand !=

null)

 foreach (Card currentcard in

playerhand.cards)

 {

 if (currentcard != null && currentcard.suit !=

"")

 {

 if (currentcard.value < 10)

 currentcard_picture = "_0" +

currentcard.value.ToString() + "_" + currentcard.suit;

 if (currentcard.value == 10)

currentcard_picture = "_" +

currentcard.value.ToString() + "_" + currentcard.suit;

 if (currentcard.value == 11)

 currentcard_picture = "J" + "_" +

currentcard.suit;

 if (currentcard.value == 12)

 currentcard_picture = "Q" + "_" +

currentcard.suit;

 if (currentcard.value >= 13)

 currentcard_picture = "K" + "_" +

currentcard.suit;

 }

 else

 currentcard_picture = "space";

 if (count == 0)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox1.Image = myImage;

 pictureBox1.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 1)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox2.Image = myImage;

 }

 if (count == 2)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox3.Image = myImage;

 }

 if (count == 3)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox4.Image = myImage;

 }

 if (count == 4)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox5.Image = myImage;

 }

 if (count == 5)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox6.Image = myImage;

 }

 if (count == 6)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox7.Image = myImage;

 }

 if (count == 7)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox8.Image = myImage;

 }

 if (count == 8)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox5.Image = myImage;

 }

 if (count == 9)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox10.Image = myImage;

 }

 if (count == 10)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox11.Image = myImage;

 }

 if (count == 11)

 {

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox12.Image = myImage;

 }

 count++;

 }

 } // end display hand

This still won’t do anything though as we have one

more important step. Remember those cards you

made at the beginning of all this? We need to import

those to our project. At the top of the screen click on

PROJECT ->blackjack properties. Then in the left

hand column select Resources, along the top of this

section is a tab Add Resource, click the small black

dropdown arrow on its right and choose ‘Add

existing file..’ then navigate to where you saved your

card images select them and click open. You’ll notice

the names displayed are different from the file

names, visual studio adds an underscore _ since

resource names shouldn’t start with a number and

doesn’t display the file extension. Not to worry

though as our display hand function already takes

that into account. Now go back and change the

button1_Click function to this:

 private void button1_Click(object sender, EventArgs

e)

 {

 player_hand.deal_cards(currentdeck,

numcards);

 display_hand(player_hand);

 richTextBox1.Text = player_hand.result +

Environment.NewLine;

 }

Go ahead and try running your project again, click

the deal button you should get output like this:

You’ll notice that even though the deal function adds

two cards to the players hand we’re only seeing one.

This is because we set all the picture boxes after the

first one to hidden.

So in the display hand function look for the section

following if (count ==1), this is checking for a second

card, 0 being the first. Now change it to look like

this:

if (count == 1)

 {

 pictureBox2.Visible = true; //showing

second card

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox2.Image = myImage;

 pictureBox2.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

The line pictureBox2.visible= true; shows the second

card, also note the line pictureBox2.SizeMode =

PictureBoxSizeMode.StretchImage; which ensures

our card image is stretched to fit the picturebox

correctly. This addition should be done to all the

card display sections 0 through11 now our display

cards function should look like this:

// *** Display current hand *******************

 public void display_hand(Hand playerhand)

 {

 int count = 0;

 string currentcard_picture = "";

 DateTime t = DateTime.Now;

 if (playerhand.cards != null && playerhand !=

null)

 foreach (Card currentcard in

playerhand.cards)

 {

 if (currentcard != null && currentcard.suit

!= "")

 {

 if (currentcard.value < 10)

 currentcard_picture = "_0" +

currentcard.value.ToString() + "_" + currentcard.suit;

 if (currentcard.value == 10)

 currentcard_picture = "_" +

currentcard.value.ToString() + "_" + currentcard.suit;

 if (currentcard.value == 11)

 currentcard_picture = "J" + "_" +

currentcard.suit;

 if (currentcard.value == 12)

 currentcard_picture = "Q" + "_" +

currentcard.suit;

 if (currentcard.value >= 13)

 currentcard_picture = "K" + "_" +

currentcard.suit;

 }

 else

 currentcard_picture = "space";

 if (count == 0)

 {

 pictureBox1.Visible = true; //showing

first card

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox1.Image = myImage;

 pictureBox1.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 1)

 {

 pictureBox2.Visible = true; //showing

second card

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox2.Image = myImage;

 pictureBox2.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 2)

 {

 pictureBox3.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox3.Image = myImage;

 pictureBox3.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 3)

 {

 pictureBox4.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox4.Image = myImage;

 pictureBox4.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 4)

 {

 pictureBox5.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox5.Image = myImage;

 pictureBox5.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 5)

 {

 pictureBox6.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox6.Image = myImage;

 pictureBox6.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 6)

 {

 pictureBox7.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox7.Image = myImage;

 pictureBox7.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 7)

 {

 pictureBox8.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox8.Image = myImage;

 pictureBox8.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 8)

 {

 pictureBox9.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox9.Image = myImage;

 pictureBox9.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 9)

 {

 pictureBox10.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox10.Image = myImage;

 pictureBox10.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 10)

 {

 pictureBox11.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox11.Image = myImage;

 pictureBox11.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 if (count == 11)

 {

 pictureBox12.Visible = true;

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox12.Image = myImage;

 pictureBox12.SizeMode =

PictureBoxSizeMode.StretchImage;

 }

 count++;

 }

 } // end display hand

Go ahead and run your project and press deal, you

should now see two cards, you’ll notice though, that

the deal button is still displayed, if you click it you’ll

continue to receive two cards each time which are

displayed until all our picture boxes are filled. Let’s

go ahead and fix that now. In the button1_Click

function (our deal button) we need to add a line to

hide the deal button, then we need to make the hit

and stay buttons visible, You may have also noticed

the result is not showing in the textbox yet, this is

because we haven’t called the evaluate function yet

so we may as well do that now, here’s the updated

function:

private void button1_Click(object sender, EventArgs

e) //Deal button

 {

 player_hand.deal_cards(currentdeck, numcards);

 display_hand(player_hand);

 player_hand.evaluate_hand();

 richTextBox1.Text = player_hand.result +

Environment.NewLine;

 button1.Visible = false;

 button2.Visible = true;

 button3.Visible = true;

 }

Now if you run the project you should see two cards

when the deal button is clicked and their combined

value displayed in the textbox. The hit and stick

button still don’t do anything though so let’s take

care of that next. Going back to the

Form1.cs[Design] and double click on the hit button.

This will create the button2_Click function. Add code

so it looks like the following:

private void button2_Click(object sender, EventArgs

e) // Hit function

 {

 player_hand.add_card(currentdeck, 1);

 display_hand(player_hand);

 player_hand.evaluate_hand();

 richTextBox1.Text = player_hand.result +

Environment.NewLine;

 button1.Visible = false;

 button2.Visible = true;

 button3.Visible = true;

 }

Depending on the order you made your picture

boxes the cards are probably showing up beneath

the previous dealt ones, we can fix this with

pictureBox.BringToFront(); add this to each of the

sections in the display cards function and they’ll

each move to the front as they are dealt.

Here’s how it looks for the first card , repeat for the

rest:

 if (count == 0)

 {

 pictureBox1.Visible = true;

//showing first card

 System.Resources.ResourceManager rm =

blackjack.Properties.Resources.ResourceManager;

 Bitmap myImage =

(Bitmap)rm.GetObject(currentcard_picture);

 pictureBox1.Image = myImage;

pictureBox1.BringToFront();

pictureBox1.SizeMode =

pictureBoxSizeMode.StretchImage;

 }

Ok, the cards continue to be dealt even after we’ve

bust so lets add a end_game function, this goes in

Form1.cs you can add it right after the button2

function.

private void end_game(Hand player_hand, Hand

dealer_hand)

 {

 dealer_hand.deal_cards(currentdeck,

numcards); //deal cards to dealer

 dealer_hand.evaluate_hand();

 while(dealer_hand.score<15) //dealer sticks

on 15 or higher

 {

 dealer_hand.add_card(currentdeck, 1);

 dealer_hand.evaluate_hand();

 }

 if (player_hand.score > 21)

 {

 richTextBox1.Text = "You bust better luck

next time." + Environment.NewLine;

 }

 if (dealer_hand.score > 21)

 {

richTextBox1.Text = "Dealer has " +

dealer_hand.score + ", congratulations you win ."

+Environment.NewLine;

 }

 else

 {

 if ((player_hand.score > dealer_hand.score)

&& (player_hand.score <= 21))

 {

richTextBox1.Text = "Dealer has " +

dealer_hand.score + ", congratulations you win ." +

Environment.NewLine;

 }

 if(player_hand.score ==21)

 {

 richTextBox1.Text = "Congratulations

BLACKJACK, you win ." + Environment.NewLine;

 }

 }

 button1.Visible = true;

 // deal button is visible

 button2.Visible = false;

 // hit button hidden

 button3.Visible = false;

// stick button hidden

 }

By now most of this should be fairly familiar. Firstly

we give the dealer his cards, note he sticks at 15 or

higher, this can be changed to match whichever

rules you’d prefer. We then compare the dealer

hand and player hand to see who won, and display

an appropriate message to the player. We’ll need to

call this function when the stick button is clicked so

double click on the stick button to generate a

button3_Click function and add code so it looks like

this:

 private void button3_Click(object sender,

EventArgs e) // stick button

 {

 end_game(player_hand, dealer_hand);

 }

We’ll need to call the end_game function from

another place as well, in the button2_Click function

that is called when the player clicks hit, we’ll check if

the player goes bust and if so call end_game.

if (player_hand.score >= 21)

 {

 end_game(player_hand, dealer_hand);

 }

Almost done now, the end_game function displays

the result of the current hand and reveals the deal

button, so the final step we’ll make here is to reset

the hands when the deal button is clicked. The new

deal function should look like this:

 private void button1_Click(object sender, EventArgs

e) //Deal button

 {

 //initialise components

 numcards = 2; //deal 2 cards initially

 currentdeck = new Deck(); //create new deck

of cards

 player_hand = new Hand(numcards); //create

hand for player

 dealer_hand = new Hand(numcards); //

create hand for dealer

 button1.Visible = true;

 // deal button is visible

 button2.Visible = false;

// hit button hidden

 button3.Visible = false;

// stick button hidden

 pictureBox1.Visible = true;

//showing spot for first card

 pictureBox2.Visible = false;

//showing second card

 pictureBox3.Visible = false;

//hiding the rest

 pictureBox4.Visible = false;

 pictureBox5.Visible = false;

 pictureBox6.Visible = false;

 pictureBox7.Visible = false;

 pictureBox8.Visible = false;

 pictureBox9.Visible = false;

 pictureBox10.Visible = false;

 pictureBox11.Visible = false;

 pictureBox12.Visible = false;

 richTextBox1.Text = "Welcome to CaptNemo

BlackJack" + Environment.NewLine;

 richTextBox1.Text += "Press Deal to begin" +

Environment.NewLine;

 player_hand.deal_cards(currentdeck,

numcards);

 display_hand(player_hand);

 player_hand.evaluate_hand();

 richTextBox1.Text = player_hand.result +

Environment.NewLine;

 button1.Visible = false;

 button2.Visible = true;

 button3.Visible = true;

 }

There you go a working black jack game, some ideas

for improvement, add a bet button, award the

player a starting amount of money and keep score.

Adding multiple player options etc. I’ll leave those

for you though. Please feel free to leave any

questions or comments. If you make a great card

game I’d love to hear about it.

